Evaluation of Acidity of CO₂ in Protic Media. Carboxylation of Reduced Quinone

Hiroaki TANAKA, Hirotaka NAGAO, and Koji TANAKA*

Institute for Molecular Science, Department of Structural Molecular Science,
The Graduate University for Advanced Studies, Myodaiji, Okazaki 444

In order to evaluate the acidity of CO_2 in protic media, interaction of CO_2 with reduced 2,3,5,6-tetramethylquinone (TMQ) was investigated by means of cyclic voltammetry in CH₃CN, CH₃OH, and CH₃CN / H₂O. Predominant carboxylation of TMQ in CH₃OH and CH₃CN / H₂O (9:1 v/v) indicates that the acidity of CO_2 is almost equivalent or stronger than that of proton in those media.

Much attention has been paid to utilization of CO_2 , and a variety of transition metal complexes as homogeneous catalysts have proven to be active for electro- and photochemical CO_2 reduction under protic conditions.¹⁾ There is, however, a controversy about the mechanism of generation of CO and CO and CO which of proton or CO_2 attacks low valent coordinatively unsaturated metal centers at the initial stage of the reduction CO in the former, formato complexes CO while metal carboxylates (M-C(O)OH) would be generated by protonation of metal-CO complexes in the latter CO in the formation of CO is reasonably explained by the irreversible

$$[M]^{n+} \xrightarrow{H^+} [M-H]^{(n+1)+} \xrightarrow{CO_2} [M-OC(O)H]^{(n+1)+}$$
(1)

$$[M]^{n+} \xrightarrow{CO_2} [M-CO_2]^{n+} \xrightarrow{H^+} [M-C(O)OH]^{(n+1)+}$$
 (2)

reduction of both M-OC(O)H and M-C(O)OH, while the CO evolution has been ascribed to (i) irreversible reduction of metal-CO complexes resulting from dehydroxylation of M-C(O)OH,³⁾ (ii) decarbonylation of M-OC(O)H affording M-OH,⁴⁾ and (iii) degradation of products during an electrolysis.²⁾ Thus, it is very hard to determine which of M-OC(O)H or M-C(O)OH operates in the catalytic cycles of the CO₂ reduction. If Eqs. 1 and 2 are assumed to be primarily governed by the relative acidity of CO₂ and proton in solutions, the evaluation of the acidity of CO₂ in protic media is much of interest in connection with the reaction mechanism of the reduction of CO₂ catalyzed by

transition metal complexes. This letter describes a competitive electrophilic addition of CO_2 and proton to reduced 2,3,5,6-tetramethylquinone (TMQ) in CH_3CN / H_2O and CH_3OH , which are widely used in electro- and photochemical CO_2 reduction.

The cyclic voltammogram (CV) of TMQ shows two $[TMQ]^{0/-}$ and $[TMQ]^{-/2-}$ redox couples at $E_{1/2} = -0.75$ and -1.31 V vs. Ag / AgCl ($E_{1/2} = (E_{pc} + E_{pa})$ / 2) in dry CH₃C N under N₂ (a solid line in Fig. 1(a)). Introduction of CO₂ to the solution (0.24M) results in the increase in an irreversible cathodic peak current at -0.83 V and an anodic wave appears at +0.05 V (a dotted line in Fig. 1(a)). The original $[TMQ]^{0/-}$ and $[TMQ]^{-/2-}$ redox couples in CH₃CN were completely regenerated with the same peak current intensities upon removing CO₂ by bubbling N₂ into the solution for 20 min. These results clearly indicate that $[TMQ]^{2-}$ forms a CO₂ adduct (Eq. 3) in CH₃CN, similarly to a 1:2 CO₂ adduct of 9,10-phenanthrenequinone.⁵

$$TMQ + 2e^{-} + 2CO_{2} = [TMQ \cdot 2CO_{2}]^{2}$$
 (3)

To evaluate the acidity of CO₂ in protic media, the redox behavior of TMQ in CH₃CN / H₂O and CH₃OH was investigated under N₂ and CO₂ atmospheres. The $E_{1/2}$ value of the [TMQ]-/2- couple in CH₃CN underwent pronounced anodic shifts compared with that of the [TMQ]^{0/-} one with increasing amount of H₂O in the solution,⁶⁾ and two pairs of the cathodic and anodic waves of the [TMQ]-/2- and [TMQ]^{0/-} couples coalesce at E_{pc} = -0.65 and E_{pa} = -0.53 V in CH₃CN / H₂O (9:1 v/v, a solid line in Fig. 1(b)), as described elsewhere.⁶⁾ Similarly, the CV of TMQ also shows only one pair of cathodic and anodic waves at -0.56 and -0.06 V in CH₃OH under N₂ (a solid line in Fig. 1(c)). On the basis of the fact that the anodic peak potential of 2,3,5,6-tetramethylhydroquinone (TMQ·2H) was observed at +0.59 and +0.60 V in CH₃CN / H₂O (9:1 v/v) and CH₃OH, respectively, TMQ dianion mainly exists as a mono-protonated anionic form, [TMQ·H]- rather than the neutral [TMQ·2H]⁰ in those media (Eqs. 4 and 5).⁷⁾ On the other hand, the CV of TMQ in CO₂-saturated CH₃CN / H₂O (9:1 v/v) and CH₃OH

$$TMQ + 2e^{-} + H^{+} = [TMQ \cdot H]^{-}$$
 (4)

$$TMQ + 2e^{-} + 2H^{+} = [TMQ \cdot 2H]^{0}$$
 (5)

displays the cathodic and anodic waves at -0.64 and +0.29 V, and -0.52 and +0.33 V, respectively (dotted lines in Fig. 1(b) and (c)), suggesting the formation of the CO₂ adducts. There are four possible compositions of the CO₂ adducts such as $[TMQ \cdot H \cdot CO_2]^-$, $[TMQ \cdot H \cdot CO_2H]^0$, $[TMQ \cdot CO_2 \cdot CO_2H]^-$, and $[TMQ \cdot (CO_2H)_2]^0$, except for $[TMQ \cdot 2CO_2]^{2-}$ existing in CO₂-saturated dry CH₃CN. Concerning the formation of $[TMQ \cdot H \cdot CO_2]^-$ and $[TMQ \cdot H \cdot CO_2H]^0$, it is not clear whether H⁺ or CO₂ initially attacks $[TMQ]^{2-}$. However, $[TMQ \cdot H \cdot CO_2H]^0$ may be ruled out from the view that $[TMQ \cdot H]^-$ is the

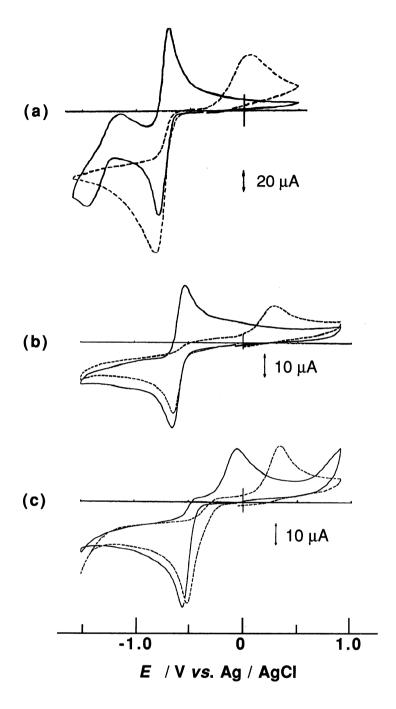


Fig. 1. CVs of TMQ (3.40 mM, (a); 0.96 mM, (b); 1.22 mM, (c)) under N2 (solid lines) and CO2 (dotted lines) in CH₃CN (a), CH₃CN / H₂O (9:1 v/v, (b)) and CH₃OH (c), containing Bu₄NBF₄ (0.1 M) at 100 mV/s; working electrode: glassy carbon.

main species in CH₃CN / H₂O (9:1 v/v) and CH₃OH under N₂, as described above. The remaining two, $[TMQ \cdot CO_2 \cdot CO_2H]^-$ and $[TMQ \cdot (CO_2H)_2]^0$, formally generated by protonation of $[TMQ \cdot 2CO_2]^{2-}$ apparently result from an initial electrophilic attack of CO_2 to $[TMQ]^{2-}$ in CH₃CN / H₂O (9:1 v/v) and CH₃OH. It is, therefore, concluded that the acidity of CO_2 is almost equivalent or stronger than that of proton of those media under CO_2 .

The generation of CO and HCOOH in the reduction of CO_2 catalyzed by homogeneous catalysts has often been explained by both Eqs. 1 and 2 without a direct evidence presumably due to the lack of the knowledge concerning the acidity of CO_2 in protic media.^{2,3)} The present study reveals that the reaction of Eq. 2 is favored over Eq. 1 from the standpoint of the electrophilicity of CO_2 in CH_3CN / H_2O (9:1 v/v) and CH_3OH .

References

- 1) "Enzymatic and Model Carboxylation and Reduction Reactions for Carbon Dioxide Utilization," ed by M. Aresta and J. V. Schloss, Kluwer Academic Publishers, The Netherlands (1990).
- 2) J. R. Pugh, M. R. M. Bruce, B. P. Sullivan, and T. J. Meyer, *Inorg. Chem.*, 30, 86 (1991); J. L. Grant, K. Goswami, L. O. Spreer, J. W. Otvos, and M. Calvin, *J. Chem. Soc.*, *Dalton Trans.*, 1987, 2105.
- 3) D. L. Dubois, A. Miedaner, and R. C. Haltiwanger, J. Am. Chem. Soc., 113, 8753 (1991); H. Ishida, T. Terada, K. Tanaka, and T. Tanaka, Inorg. Chem., 29, 905 (1990); D. L. Dubois and A. Miedaner, "Catalytic Activation of Carbon Dioxide," ed by W. M. Ayers, ACS Symposium Series 363, American Chemical Society, Washington, DC (1988), p. 42; H. Ishida, K. Tanaka, and T. Tanaka, Organometallics, 6, 181 (1987); D. L. Dubois and A. Miedaner, J. Am. Chem. Soc., 109, 113 (1987); J. Hawecker, J.-M. Lehn, and R. Ziessel, Helv. Chim. Acta, 69, 1990 (1986); M. Beley, J.-P. Collin, R. Ruppert, and J.-P. Sauvage, J. Am. Chem. Soc., 108, 7461 (1986).
- 4) I. Willner, Private communication.
- 5) M. B. Mizen and M. S. Wrighton, J. Electrochem. Soc., <u>136</u>, 941 (1989).
- 6) "Encyclopedia of Electochemistry of the Elements (volume XII)," ed by A. J. Bard and H. Lund, Marcel Dekker, New York (1978).
- 7) [TMQ·H]⁻ may exist as an equilibrium mixture with [TMQ]²⁻ in CH₃OH and CH₃CN / H₂O (9:1 v/v). Taking into the account of the agreement of the anodic peak potential of TMQ in CH₃OH with the reported value of [TMQ·H]⁻ (Ref. 6), the equilibrium in CH₃CN / H₂O (9:1 v/v) may be shifted to [TMQ]²⁻ compared with that in CH₃OH.

(Received December 28, 1992)